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Fig. 4. Waveguides with combined symmetries. (a) Circular waveguide
with axially magnetized ferrite rod (reflection and inversion symmetries).
(b) Rectangular wa.veguide with transversely magnetized ferrite slab
(1 80° rotation and inversion symmetries).

then the modal electromagnetic field components must be either

even functions of both x and y or odd functions of both x and y.

If the waveguide possesses both 180” rotation and inversion

symmetry [see Fig. 4(b) for an example], then the modal elec-

tromagnetic field components must be either even or odd func-

tions of x (the 180” rotation axis); there are no restrictions on the

y variation.

III. CONCLUSIONS

It has been shown that a waveguide containing gyrotropic

media with a biasing magnetic field Ho will be bidirectional if it

possesses one of the following symmetries: reflection symmetry

@ a plane perpendicular to the waveguide axis with If. parallel

to the waveguide axis; 180° rotation symmetry about an axis

perpendicular to the waveguide axis with Ho parallel to the

rotation axis; or inversion in a point on the waveguide axis with

no restriction on the direction of Ho. It is conjectured that the

possession of one of these symmetries is also a necessary con-

dition for a waveguide containing gyrotropic media to be bi-

directional, but this has not been proved.

In the examples shown in Figs. 1-4, the biasing magnetic field

is uniform in direction and magnitude over the waveguide cross

section. The relationship between bidirectionality and the sym-

metry conditions holds more generally for cases where the direc-

tion or magnitude of the biasing magnetic field varies over the

cross section. However, any such variation must be properly

accounted for in the determination of the symmetry properties of

the gyrotropic media in the waveguide.

A comment concerning the relation between reciprocity and

bidirectionality is warranted. An arbitrary current excitation at

plane ZI of a waveguide will produce a related electromagnetic

field at plane Z2. If this same current excitation, when located at

plane Z2, produces an identical electromagnetic field at plane ZI,

then the waveguide is said to be reciprocal. A bidirectional wave-

guide containing gyrotropic media will, in general, not exhibit

this reciprocity. For example, suppose a linearly polarized cur-

rent excites the dominant modes of the bidirectional waveguide

shown in Fig. 4(a) (the dominant modes are related to the lfl ~

modes of an empty circular waveguide). This excitation will pro-

duce an electromagnetic field which exhibits Faraday rotation

[7], which is a nonreciprocal effect. On the other hand, if the

current excitation is such as to excite only thos~ modes of this

waveguide which are related to the Eon modes of an empty

circular waveguide, reciprocal behavior will be observed [8]. The

symmetry conditions establish whether a waveguide containing

gyrotropic media will be bidirectional, but they do not determine

whether or not reciprocal behavior might be observed for some

particular excitation.

APPENDIX

The transformation properties of electric fields (polar vectors)

and magnetic fields (axial vectors) under reflection, 180° rotation,

and inversion are summarized here. For a more complete dis-

cussion of the properties of polar and axial vectors see [9] or

[10]; [11 ] presents an excellent comparison of the transformation

properties of electric and magnetic fields based on physical

arguments. Using primes to label the transformed field com-

ponents, reflection of electric and magnetic fields in the z = O

plane yields

&-’(x, y,z) = ET(x, y, – Z) FIT’(X, y,z) = – H=(X, y, – z)

Ez’(x,y,z) = – Ez(X,y, – Z) H%’(X,y,Z) = Hz(x,y, ‘Z). (8)

Rotation of electric and magnetic fields by 180° about the x axis

yields

Ex’(x, y,z) = E&– y, – z) HX’(X, y,z) = HX(X, –y, – Z)

~y’(x, y,z) = – EY(x, ‘y, – Z) HY’(X,Y,Z) = – ~Y(x, ‘Y, – z)

~z’(X,y,Z) = – E=(x, –y, –Z) ~z’(X,y,Z) = – ~z(X, –y, – Z).

(9)

Inversion of electric and magnetic fields in z = O yields

E’(x,Y,z) = –E(–x, –y, –z) H’(X,y,Z) = ~(– X,–y, –Z).

(lo)
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Abstract—The piezoelectric and magnetoelastic surface wave pro-
pagation through a composite layered structure of one piezoelectric and
another magnetoelastic media is considered with a metal plate placed
in between them. The dispersion relations have been derived and nu-

merically computed. Thereafter, the field distributions are evaluated.
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These results may find usefulness for the realization of nonreciprocal

acoustic surface wave devices.

I. INTRODUCTION

The present trend of research in investigating the behaviors of

surface waves in piezoelectric and magnetoelastic materials led

to the choice of the problem being discussed in this short paper.

Many research reports have already been published on this

subject [1]–[3]. Of these, the investigations which need special

attention are the existence of shear-type elastic surface waves

along a surface of piezoelectric material as shown by Bleustein

[4]. Also Matthews et al, and Van de Vaart investigated the case

of shear-type surface wave propagation on the surface of ferro-

magnetic materials [3], [5]. On the other hand, Maerfeld and

Tournois established the presence of an acoustic shear surface

wave guided by the interface of two semi-infinite media in contact,

ifone, atleast, of these twomedia ispiezoelectric [6].

In the framework of the present short paper, the shear-type

piezoelectric and magnetoelastic surface wave propagation

through a composite layered structure of one piezoelectric (ZnO)

and another magnetoelastic (GaYIG) medium is being con-

sidered and a metal plate of any arbitrary finite thickness is

assumed to be inserted between the two media. The relevant

dispersion relation has been derived and it has been shown that

such structure does not possess the same propagation character-

istics in both + y and – y directions of propagation. Later, the

case of a thin metal plate (with negligible thickness) is treated and

the necessary expressions for the field distributions have been

obtained to know the concentration of power near the surface.

II. DISPERSION RELATION

The geometry of the structure considered is shown in Fig. 1,

The configuration considers a thick metal plate of thickness h

inserted in between the media of ZnO of crystal class 6 mm

and GaYIG. The biasing magnetic field and the polarization axis

in ZnO are assumed to be applied in Z direction. ”Based on the

assumption of nondependence of the field on the Z axis and the

variation of the field ejmz to be implicit, the equation of motion

for shear-type piezoelectric wave and the electric potential ~E for

the piezoelectric medium can be written from Maxwell’s equation

as [4]

and

– 02pBRz~ = ~44E ~2RZE (1)

(3)

where el ~ is the piezoelectric constant. The symbo Is p~ and e~

have the usual meanings of density and dielectric constant,

respectively.

Following a similar procedure, the equation of motion for the

shear-type magnetoelastic wave and the magnetic potential

function $~ in the magnetoelastic medium can be represented as

[3], [5]

– C02P~RzE = ~44H E2RZH (4j

and

y=ljH = o (5)

where

‘~=c44*+C44
(bY)2,aoHi

M(co= – coo=) “

The term C44H represents the elastic constant of the medium

concerned and

w~= = (#oY)2@(~i + ~).

And also *His given by

(6)

where Rz~ is the displacement in the direction of the applied

magnetic field. In the preceding sets of equations, the nomen-

clatures used are p~, b, y, M, and Hi which are density, the

magnetoelastic coupling constant, the gyromagnetic ratio, the

saturation magnetization, and the internal biasing magnetic

field, respectively.

The resulting stress tensor components for the jpiezoelectric

and magnetoelastic mediums can be obtained, respectively, as

(7)

and

– * aR~H
TXz~ = C44 ~ -I-

jmyb= aRzH

M(02 – 002) ay

+
~oyb

[

8** afjH

CO=– (YrUOHi)2 1floYHi ~ + jo — . (8)
ay

y%jE = o (2) The expression for the stress tensor TX. within the metal can be

written from (7) by considering el ~ = O and assuming RZE to
where

be equal to R= and also the fact that ~44E changes to, the value of
els 2

C44E = c~~E + — .
C44 where C44 is the stiffness constant of the metal. Thus

&~

In the preceding equations, C44E is the elastic constant of the
TX. = C44 ~ . (9)

medium and Rz~ represents the elastic displacement in Z

direction. Again the equation for electric potential function can
The solutions of the preceding equations are assumed to have the

be represented as [4]
following forms (from the boundary condition at x = f m):

(lo)

Zno(l)

““’y!!J!!J.w= ,
+h,.

///////k 4///////
GaYIG(11)

tx

and

where

RZH = Rz~e”~xeTjkYy (u)

Rz = (Rzl cos vx + RZ2 sin vx)eTJk~’y (12)

@E = ~EekY.e~jltYY (13)

+H = @fle-kyxeTjkyy (14)

Fig. 1. Geometry of the composite structure.
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The necessary and sufficient boundary conditions are that the

normal component of the stress tensor and the displacement

terms can be equated at the corresponding interfaces of the

media and the metal plate. Also the electric potential vanishes

at x = – h/2 and the normal components of magnetic flux

density equal zero at x = + h/2. With the application of the

above mentioned conditions, the expression for the dispersion

characteristics becomes

C% (f~ = c%127L = 964 MHz). On the other hand, the lower
coupling frequency f. represents the coupling between the elastic

wave and the volume mode of the magnetostatic wave [7]. In

this region, the propagation characteristics show the reciprocal

nature in both k y directions.

Hence the comparison between Fig. 2(a) and (b) reveals that

the dispersion characteristics behavein the same way as the case

where magnetoelastic coupling is absent excepting near the

frequencies f. and fm.Further, the dispersion relation for the

thin metal plate case can be expressed conveniently, by assuming

h = O in (15), as

“’”J’-MY ‘ C44EJ1--6(3
2

_ e15 + yb%o(co t ,UOYHJ
——

EE – M(CO2 – 0+2)(0 * CDm) “
(16)

tan vh
——

C44V

. (15)

In (15)

Com = /JoY(~i + M).

For numerical solution of (15), the assumed values of the

material constants are the following: Y = 1.76 x 1011 (Wb/m2

S)–l, ~off~ = 50 x 10-4 Wb/m2, vOM. = 300 x 10–4 Wb/m2,

b = 7.4 x 105 J/m2, el~ = -0.59 C/m2, C44 = 2.85 x 1010

N/mz, C44H = 7.64 x 1010 N/m2, C44E = 4.25 x 1010 N/m2,

p = 1.93 x 104 kg/m3, p~ = 5.17 x 103 kg/m3, p~ = 5.68 x

103 kg/m3, and eE = 8.33 x E. F/m. As a conducting plate,

polycrystalline gold of class cubic m3m having thickness 1 ,um is

chosen.

To ‘show clearly the effect of the magnetoelastic coupling,

firstly, the dispersion characteristics in the absence of the mag-

netoelastic coupling is obtained simply by putting b = O in (15).

Then it is numerically evaluated and plotted in Fig. 2(a) and

represented by the solid line. The lines for q = O, < = O, and

v = O mean, respectively, the volume mode of the magneto-

elastic wave, the piezoelectric wave, and the elastic wave in the

absence of the corresponding boundaries. As can be seen from

Fig. 2(a), the dispersion curves lie in the region between t = O

and v = O lines and thus yield two cutoff frequencies fl and

A. Moreover, the dispersion curves are symmetric for both t y

directions and hence the propagation characteristics are re-

ciprocal in nature—very similar to that of an ordinary shear

elastic wave in a composite structure in the presence of the

piezoelectric constant.

Next the dispersion curves are plotted; in Fig. 2(b) the case

where magnetoelastic coupling is present (i.e., b # O) is repre-

sented by the solid lines. The effect of the coupling between the

magnetostatic wave and the ordinary shear elastic wave exhibits

itself at particular frequencies like fo(coo)and ~.(co~. The upper

frequency fm is due to the coupling between the elastic wave and

the magnetostatic surface wave influenced by the existence of

the metal plate where the split bandwidth, a measure of the

coupling strength, depends on the metal thickness [5]. Also

the propagation is allowed only in – y direction because of the

consideration of a semi-infinite medium [3], [7]. Thus it can be

seen to be nonreciprocal in nature near the frequency co =

In this case, the mass effect of the metal plate can be neglected.

In (16), the terms involved are explained already, The small

dashed line in Fig. 2(b) represents the ro – k diagram for the thin

metal plate case, using same material constants mentioned before.

As can be seen, the solution appears in the – y direction only and

this becomes evident from the curve, where the frequency band-

width near the frequency ,fm is about 10 MHz with k value

ranging between 1.9 x 106 and infinity.

III. FIELD DISTRIBUTION IN THIN METAL PLATE CASE

To know the concentration of power near the surface, which is

important to investigate from physical aspects, the field dis-

tribution as a function of depth is evaluated. The field equations

(10)-(14), as applied to the case of a thin metal plate, are

normalized with respect to (10) with imposition of the necessary

boundary conditions. Thus

. Lx T jkyyRZE = RzEe e (17)

RZH = Rz~e-nxe7jkYy (18)

$&= – RZE % (ekYx – e~x)e~%y (19)
&~

and

@$” = A.E ~2 ‘b
[
,uoHi ye- ~x

— 0J02

Fig. 3(a) represents the distribution of the potential function

in depth direction and Fig. 3(b) explains the particle displacement

as a function of depth in both + x and – x directions very near

to co~. All the field components exhibit exponential decaying

nature. Moreover, the characteristics of the elastic displacements

are similar to the characteristics of Stonely wave case [1].

IV. CONCLUSIVE DISCUSSIONS

In the adjoining figures, the dispersion diagrams for thick and

thin metal plate cases are being shown. As can be seen from the

m-k characteristics for thick metal plate case, the propagation
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Fig. 2. (a) The dispersion diagram for +y and – y directions of propaga-
tion in the absence of the magnetoelastic coupling. (b) The dispersion
diagram for +y and –y directions of propagation.

characteristics, around the frequency fm,become nonreciprocal

due to the magnetostatic surface wave. As a matter of fact, the

forward wave still retains its monotonic increasing behavior due

to the shear elastic wave of the elastic layered structure, but the

backward wave does not. In contrast, the dispersion character-

istics for a thin metal plate case are purely nonreciprocal in

nature. Also the propagation characteristics are constrained in a

rather narrow band. The aforesaid structure, being discussed in

the present short paper, may find extensive usefulness in the

realization of nonreciprocal surface wave devices and also for the

excitation of magnetoelastic surface wave using a piezoelectric

surface wave.
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