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Fig. 4. Waveguides with combined symmetries. (a) Circular waveguide
with axially magnetized ferrite rod (refiection and inversion symmetries).
(b) Rectangular waveguide with transversely magnetized ferrite slab
(180° rotation and inversion symmetries).

then the modal electromagnetic field components must be either
even functions of both x and y or odd functions of both x and y.
If the waveguide possesses both 180° rotation and inversion
symmetry [see Fig. 4(b) for an example], then the modal elec-
tromagnetic field components must be either even or odd func-
tions of x (the 180° rotation axis); there are no restrictions on the
y variation.

III. CONCLUSIONS

It has been shown that a waveguide containing gyrotropic
media with a biasing magnetic field H,, will be bidirectional if it
possesses one of the following symmetries: reflection symmetry
in a plane perpendicular to the waveguide axis with H, parallel
to the waveguide axis; 180° rotation symmetry about an axis
perpendicular to the waveguide axis with H parallel to the
rotation axis; or inversion in a point on the waveguide axis with
no restriction on the direction of Hy. It is conjectured that the
possession of one of these symmetries is also a necessary con-
dition for a waveguide containing gyrotropic media to be bi-
directional, but this has not been proved.

In the examples shown in Figs. 1-4, the biasing magnetic field
is uniform in direction and magnitude over the waveguide cross
section. The relationship between bidirectionality and the sym-
metry conditions holds more generally for cases where the direc-
tion or magnitude of the biasing magnetic field varies over the
cross section. However, any such variation must be properly
accounted for in the determination of the symmetry properties of
the gyrotropic media in the waveguide.

A comment concerning the relation between reciprocity and
bidirectionality is warranted. An arbitrary current excitation at
plane z, of a waveguide will produce a.related electromagnetic
field at plane z,. If this same current excitation, when located at
plane z,, produces an identical electromagnetic field at plane z,,
then the waveguide is said to be reciprocal. A bidirectional wave-
guide containing gyrotropic media will, in general, not exhibit
this reciprocity. For example, suppose a linearly polarized cur-
rent excites the dominant modes of the bidirectional waveguide
shown in Fig. 4(a) (the dominant modes are related to the H,;
modes of an empty circular waveguide). This excitation will pro-
duce an electromagnetic field which exhibits Faraday rotation
[7], which is a nonreciprocal effect. On the other hand, if the
current excitation is such as to excite only those, modes of this
waveguide which are related to the E,, modes of an empty
circular waveguide, reciprocal behavior will be observed [8]. The
symmetry conditions establish whether a waveguide containing
gyrotropic media will be bidirectional, but they do not determine
whether or not reciprocal behavior might be observed for some
particular excitation.

APPENDIX

The transformation properties of electric fields (polar vectors)
and magnetic fields (axial vectors) under reflection, 180° rotation,
and inversion are summarized here. For a more complete dis-
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cussion of the properties of polar and axial vectors see [9] or
[10]; [11] presents an excellent comparison of the transformation
properties of electric and magnetic fields based on physical
arguments. Using primes to label the transformed field com-
ponents, reflection of electric and magnetic fields in the z = 0
plane yields
ET,(x’yaZ) = ET(x,y,—Z) HT’(x3y’z) = —HT(x,y’_z)

®

Rotation of electric and magnetic fields by 180° about the x axis
yields

E/(x,y,2) = —Efx,y,—z) H,/(x,y,2) = H/(x,y,~2).

E/(x,3,2) = Ef(x,—y,—2z) H,/(x,y,2) = Hx,~y,~2)

E)(x,y,2) = —EJ(x,~y,~2) H/(x,y,2) = —H,(x,—y,—z)
E;(x,y,2) = —Ex,~y,—z) H(x,5,2) = —H(x,-y,—2).
®
Inversion of electric and magnetic fields in z = 0 yields
E'(x,y,z2) = —E(~x,—y,—z) H'(x,y,z) = H(—x,—y,—2z).
(10
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The Piezoelectric-Magnetoelastic Wave Propagation
Through the Conducting Plate in a Composite Medium
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Abstract—The piezoelectric and magnetoelastic surface wave pro-
pagation through a composite layered structure of one piezoelectric and
another magnetoelastic media is considered with a metal plate placed
in between them. The dispersion relations have been derived and nu-
merically computed. Thereafter, the field distributions are evaluated.
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SHORT PAPERS

These results may find usefulness for the realization of nonreciprocal
acoustic surface wave devices.

1. INTRODUCTION

The present trend of research jn investigating the behaviors of
surface waves in piezoelectric and magnetoelastic materials led
to the choice of the problem being discussed in this short paper.
Many research reports have already been published on this
subject [1]-[3]. Of these, the investigations which need special
attention are the existence of shear-type elastic surface waves
along a surface of piezoelectric material as shown by Bleustein
[4]. Also Matthews ez al. and Van de Vaart investigated the case
of shear-type surface wave propagation on the surface of ferri-
magnetic materials [3], [5]. On the other hand, Maerfeld and
Tournois established the presence of an acoustic shear surface
wave guided by the interface of two semi-infinite media in contact,
if one, at least, of these two media is piezoelectric [6].

In the framework of the present short paper, the shear-type
piezoelectric and magnetoelastic surface wave propagation
through a composite layered structure of one piezoelectric (ZnO)
and another magnetoelastic (GaYIG) medium is being con-
sidered and a metal plate of any arbitrary finite thickness is
assumed to be inserted between the two media. The televant
dispersion relation has been derived and it has been shown that
such structure does not possess the same propagation character-
istics in both +y and —y directions of propagation. Later, the
case of a thin metal plate (with negligible thickness) is treated and
the necessary expressions for the field distributions have been
obtained to know the concentration of power near the surface.

II. DISPERSION RELATION

The geometry of the structure considered is shown in Fig. 1.
The configuration considers a thick metal plate of thickness 4
inserted in between the media of ZnO of crystal class 6 mm
and GaYIG. The biasing magnetic field and the polarization axis
in ZnO are assumed to be applied in Z direction.”B_ased on the
assumption of nondependence of the field on the Z axis and the
variation of the field /! to be implicit, the equation of motion
for shear-type piezoelectric wave and the electric potential ¢ for
the piezoelectric medium can be written from Maxwell’s equation
as [4]

—@?peRzp = Cos® VRyp 0))
and
V=0 @
where
~ E £ €5
Cas” = Cag" + —.
ég
In the preceding equations, C,,F is the elastic constant of the
medium and Ry represents the elastic displacement in Z

direction. Again the equation for electric potential function can
be represented as [4]

Zn0(D)
METAL PLATE

—hiz
Z¢

GaYIG (1)

X

Fig. 1. Geometry of the composite structure.
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where e,5 is the piezoelectric constant. The symbols pg and &
have the usual meanings of density and dielectric constant,
respectively.

Following a similar procedure, the equation of motion for the
shear-type magnetoelastic wave and the magnetic potential
function ¢y in the magnetoelastic medium can be represented as

[3], [5]

~@?pgRzn = Cas™ VRyy @
and
Vi =0 ®
where
(byYuoH;

Cul = Cf + .
44 44 M(CO2 _ (002)
The term C,,7 represents the elastic constant of the medium
concerned and

wo? = (uey)*H(H; + M).

And also ¥y is given by
soHy?b
Yy = oy — Vil 1

. Ren ©

w” — CD02

where Rzy is the displacement in the direction of the applied
magnetic field. In the preceding sets of equations, the nomen-
clatures used are py, b, y, M, and H; which are density, the
magnetoelastic coupling constant, the gyromagnetic ratio, the
saturation magnetization, and the internal biasing magnetic
field, respectively.

The resulting stress tensor components for the piezoelectric
and magnetoelastic mediums can be obtained, respectively, as

— .OR b’
Toze = Cad® —ZE + g5 ] )
ox ox
and
~ = OR Joyb? R
Tean = Cad 22 + 2

ox M(CO2 — 6002) ay

Loy oy . Yy
. TR P s d - SN | B
©? — (yuoH))? [,uoy Pox T ? oy ®

The expression for the stress tensor 7, within the metal can be
written from (7) by considering e;5 = 0 and assumning R,z to
be equal to R, and also the fact that C,,F changes to the value of
Cy4 where Cyy is the stiffness constant of the metal. Thus

R,

T, = Cy4 ox )

The solutions of the preceding equations are assumed to have the
following forms (from the boundary condition at x = +0):

Ryzp = Rypet™e™/ (10)
Rzu = Rzge™™e™ /%> | ,(11)
Rz = (Rz1 cos vx + Ry, sin vx)e™/m> (12)
VY = YgesTe (3)
and
Yn = e Pre™ i (14)
where
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>
. \/u ~ k.
Cua
The necessary and sufficient boundary conditions are that the
normal component of the stress tensor and the displacement
, terms can be equated at the corresponding interfaces of the
media and the metal plate. Also the electric potential vanishes

at x = —h/2 and the normal components of magnetic flux
density equal zero at x = +A/2. With the application of the

=
i

and
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Op (fm = 0,/2n = 964 MHz). On the other hand, the lower
coupling frequency f; represents the coupling between the elastic
wave and the volume mode of the magnetostatic wave [7]. In
this region, the propagation characteristics show the reciprocal
nature in both +y directions.

Hence the comparison between Fig. 2(a) and (b) reveals that
the dispersion characteristics behave in the same way as the case
where magnetoelastic coupling is absent excepting near the
frequencies f; and f,,. Further, the dispersion relation for the
thin metal plate case can be expressed conveniently, by assuming
h = 0in (15), as

o A AN pe_(©\?
C44H \/1 T (_) " C44 \/1 Tt (_)
Cas™ \ky Cad® \k,

15 + ybo(w + uyHy)

. s . . . = + . 16)
above me‘:nt_loned conditions, the expression for the dispersion ¢z M@ — 0d)(@ + o) (
characteristics becomes
_ _ wk,yb? H + o kyeqs
C44E§ + C44H,1 T ,2’7 (J’ﬂg A ) _ Ry€i1s
_tanvh _ M((@* - 0w, t ®) &g 15)
Cysv wk,yb*(yuoH; + o)

nECFCu™ — Caa®? £

T M(0® - wo’)(on + ®)

In (15)
Wy = HoY(H; + M).

For numerical solution of (15), the assumed values of the
material constants are the following: y = 1.76 x 10*! (Wb/m?
8)~%, uoH; = 50 x 10™% Wb/m?, uoM = 300 x 10~ Wb/m?2,
b=174x 10° Jjm?, e;5s = —0.59 C/m2, C,, = 2.85 x 101°
N/m?, Cu = 7.64 x 1010 N/m2, C,,F = 4.25 x 101° N/m?,
p = 193 x 10* kg/m®, py = 5.17 x 103 kg/m3, p; = 5.68 x
10® kg/m?3, and &z = 8.33 x ¢, F/m. As a conducting plate,
polycrystalline gold of class cubic m3m having thickness 1 um is
chosen.

To show clearly the effect of the magnetoelastic coupling,
firstly, the dispersion characteristics in the absence of the mag-
netoelastic coupling is obtained simply by putting » = 0 in (15).
Then it is numerically evaluated and plotted in Fig. 2(a) and
represented by the solid line. The lines for # = 0, & = 0, and
v = 0 mean, respectively, the volume mode of the magneto-
elastic wave, the piezoelectric wave, and the elastic wave in the
absence of the corresponding boundaries. As can be seen from
Fig. 2(a), the dispersion curves lie in the region between & = 0
and v = 0 lines and thus yield two cutoff frequencies f; and
f». Moreover, the dispersion curves are symmetric for both +y
directions and hence the propagation characteristics are re-
ciprocal in nature—very similar to that of an ordinary shear
elastic wave in a composite structure in the presence of the
piezoelectric constant.

Next the dispersion curves are plotted; in Fig. 2(b) the case
where magnetoelastic coupling is present (i.e., b # 0) is repre-
sented by the solid lines. The effect of the coupling between the
magnetostatic wave and the ordinary shear elastic wave exhibits
itself at particular frequencies like fo(wy) and £, (®,). The upper
frequency £, i due to the coupling between the elastic wave and
the magnetostatic surface wave influenced by the existence of
the metal plate where the split bandwidth, a measure of the
coupling strength, depends on the metal thickness [5]. Also
the propagation is allowed only in —y direction because of the
consideration of a semi-infinite medium [3], [7]. Thus it can be
seen to be nonreciprocal in nature near the frequency w =

[ky‘hs2 _ @44E§]

¢

In this case, the mass effect of the metal plate can be neglected.
In (16), the terms involved are explained already. The small
dashed line in Fig. 2(b) represents the w — k& diagram for the thin
metal plate case, using same material constants mentioned before.
As can be seen, the solution appears in the — y direction only and
this becomes evident from the curve, where the frequency band-
width near the frequency f,, is about 10 MHz with &k value
ranging between 1.9 x 10° and infinity.

II1. FiELD DiISTRIBUTION IN THIN METAL PLATE CASE

To know the concentration of power near the surface, which is
important to investigate from physical aspects, the field dis-
tribution as a function of depth is evaluated. The field equations
(10)-(14), as applied to the case of a thin metal plate, are
normalized with respect to (10) with imposition of the necessary
boundary conditions. Thus

Ryp = Ryge®e™ i an
Rz = Rzpe™"e /% (18)
b = = Rpp 12 (M — )T (19)
¢E
and
. b -
$u = Rzx 2—}’__5 [ﬂoHiVe "
w” — g
x oo £ yuoH;) e—Fvx | Ty (20)
@ *+ w,

Fig. 3(a) represents the distribution of the potential function
in depth direction and Fig. 3(b) explains the particle displacement
as a function of depth in both +x and — x directions very near
to w,. All the field components exhibit exponential decaying
nature. Moreover, the characteristics of the elastic displacements
are similar to the characteristics of Stonely wave case [1].

IV. ConcLusive Discussions

In the adjoining figures, the dispersion diagrams for thick and
thin metal plate cases are being shown. As can be seen from the
w—k characteristics for thick metal plate case, the propagation
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(a) The dispersion diagram for +y and — y directions of propaga-
tion in the absence of the magnetoelastic coupling. (b) The dispersion
diagram for +y and —y directions of propagation.

Fig. 2.

characteristics, around the frequency f,,, become nonreciprocal
due to the magnetostatic surface wave. As a matter of fact, the
forward wave still retains its monotonic increasing behavior due
to the shear elastic wave of the elastic layered structure, but the
backward wave does not. In contrast, the dispersion character-
istics for a thin metal plate case are purely nonreciprocal in
nature. Also the propagation characteristics are constrained in a
rather narrow band. The aforesaid structure, being discussed in
the present short paper, may find extensive usefulness in the
realization of nonreciprocal surface wave devices and also for the

excitation of magnetoelastic surface wave using a piezoelectric
surface wave.
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-1, f = 971.6 MHz. ——~~: For

= 969.4 MHz. (a) The distribution of potent1a1

function in depth direction. (b) The variation of particle displacement
as a function of depth.
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